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abstract: The size of the basin of attraction in ecosystems with
alternative stable states is often referred to as “ecological resilience.”
Ecosystems with a low ecological resilience may easily be tipped into
an alternative basin of attraction by a stochastic event. Unfortunately,
it is very difficult to measure ecological resilience in practice. Here
we show that the rate of recovery from small perturbations (some-
times called “engineering resilience”) is a remarkably good indicator
of ecological resilience. Such recovery rates decrease as a catastrophic
regime shift is approached, a phenomenon known in physics as “crit-
ical slowing down.” We demonstrate the robust occurrence of critical
slowing down in six ecological models and outline a possible ex-
perimental approach to quantify differences in recovery rates. In all
the models we analyzed, critical slowing down becomes apparent
quite far from a threshold point, suggesting that it may indeed be
of practical use as an early warning signal. Despite the fact that critical
slowing down could also indicate other critical transitions, such as
a stable system becoming oscillatory, the robustness of the phenom-
enon makes it a promising indicator of loss of resilience and the risk
of upcoming regime shifts in a system.

Keywords: alternative stable states, catastrophic bifurcations, critical
slowing down, early warning signals, resilience, return time.

Evidence is accumulating that some large-scale complex
systems may have alternative equilibria and critical tipping
points. This seems to be true for a range of ecosystems
but also for other systems, including climate (Higgins et
al. 2002; Alley 2004; Kump 2005) and socioeconomic sys-
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tems (Brock and Durlauf 1999; Gladwell 2000; Adler 2001;
Scheffer et al. 2003). It is difficult to prove experimentally
that a system has multiple stable states (Scheffer and Car-
penter 2003; Schröder et al. 2005), but the implications
are profound if this phenomenon occurs in a system. A
major problem from a management point of view is that
slowly changing conditions can make such systems in-
creasingly vulnerable to collapse into an alternative state.
This typically happens in an invisible way, that is, without
apparent effects on the state of the system. Such loss of
resilience arises if the basin of attraction around the pres-
ent state shrinks, making it increasingly likely that some
stochastic event will tip the system into an alternative basin
of attraction (fig. 1a, 1b). As an intuitive example, consider
being in a canoe and leaning over to one side to see some-
thing under water. Leaning over too much may cause the
canoe to capsize and end up in an alternative stable state,
upside down. It is difficult to see the tipping point coming,
as the position of the boat may change relatively little up
until the critical point. Moreover, close to the tipping
point, small disturbances such as waves can tip the balance.

Obviously, the ability to absorb perturbations without
being pushed into an alternative basin of attraction is an
important measure of the stability of a system (fig. 1a,
1b). For this concept, Holling (1973) suggested using the
term “resilience.” Unfortunately, this term is often also
used for another aspect of stability, namely, the return rate
to equilibrium after a small perturbation (Pimm 1984; fig.
1c, 1d), an aspect referred to as “engineering resilience”
by Holling (1996). To avoid confusion (Grimm and Wissel
1997) in this article, we will use the term “ecological re-
silience” for the width of the basin of attraction (Holling
1973) and the term “recovery rate” for the return rate after
a disturbance to equilibrium (Pimm 1984).

It has been argued that good management strategies for
systems with alternative basins of attraction should be
aimed at preserving or enhancing ecological resilience (the
width of the basin of attraction of the preferred state), as
this can usually be better controlled than stochastic events
that may trigger unwanted shifts (Scheffer et al. 2001).
However, a major problem is that ecological resilience can-
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Figure 1: Stability properties of an ecosystem can be intuitively depicted by the fate of a ball in a landscape of hills and valleys. The size of the
basin of attraction is a measure of the maximal disturbance that a system can absorb without shifting to another state (a, b). This property is often
referred to as “ecological resilience” (Holling 1996). The recovery rate from a small perturbation (c, d) is a measure of local stability of an equilibrium.
As we show in the text, such local recovery rates reflect the size of the basin of attraction even if the perturbation does not bring the system close
to the border of the attraction basin.

not be measured in practice. Therefore, there is a great
need for indirect indicators of ecological resilience (Car-
penter et al. 2001). The most common approach has been
to use models to determine specific indicators of ecological
resilience (Carpenter et al. 2001; Bennett et al. 2005). How-
ever, the results of such models are rather uncertain, and
often the exact mechanisms of regime shifts are poorly
known (e.g., Hare and Mantua 2000). Therefore, it would
be helpful to develop generic indicators that can be mea-
sured directly. Recently, two potential indicators have been
proposed that are related to the phenomenon that, close
to a threshold point, the signal of fluctuation in the state
variables tends to change. Kleinen et al. (2003) showed
for a stochastic climatic model that the signal becomes
more autocorrelated close to the threshold point (p“red-
der”). Carpenter and Brock (2006) used a stochastic lake
model to show that variance of the state variables will
increase close to the threshold.

Here, we explore a third generic type of indicator of an
upcoming threshold, known in physics as “critical slowing
down” (Strogatz 1994). This phenomenon refers to the
fact that in continuous models, recovery rates approach
zero as the size of the basin of attraction shrinks to nil (at
the threshold; Wissel 1984). Critical slowing down has
rarely been referred to in ecology (Rietkerk et al. 1996;
Gandhi et al. 1998). However, it has been demonstrated
in a relatively realistic model of thermohaline oceanic cir-
culation approaching a catastrophic threshold (Held and
Kleinen 2004).

We explore whether critical slowing down could be used
an indicator of ecological resilience. We demonstrate the
phenomenon in a set of four simple and two complex

ecological models. Finally, we discuss how generic this
result is and under which conditions it could be a useful
indicator in practice.

Models

To probe the relationship between recovery rate and the
width of the basin of attraction, we first analyze how those
two properties change as a catastrophic threshold is ap-
proached in six published models of systems with alter-
native stable states (parameters and equations in table 1).
The first model has one differential equation and describes
the effect of grazing pressure on a population that grows
logistically (Noy-Meir 1975; May 1977). It has been ap-
plied to numerous problems of overexploitation of various
populations. The second model is also a single differential
equation and describes the loss of phosphorus from the
top layers (epilimnion) of a deep lake and the sudden
recycling if the deeper water (hypolimnion) becomes an-
oxic (Carpenter et al. 1999). The third model consists of
two coupled differential equations and describes the feed-
back between submerged macrophytes and phytoplankton
in a shallow lake (Scheffer 1998; van Nes and Scheffer
2005). The fourth model is the classical Lotka-Volterra
model of competition between two species (Lotka [1925]
1956; Edelstein-Keshet 1988) for the situation when co-
existence is unstable (interspecific competition is greater
than intraspecific competition). The fifth model is a mul-
tispecies version of the competition model that includes
the effect of an environmental factor (van Nes and Scheffer
2004). We used a pool of 20 competing species with ran-
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Table 1: Overview of the models and parameters that were used

Model Parameters Description and references
pdX X X

p rX 1 ! ! c( ) p pdt K X "H
K (carrying capacity) p 10; p p 2; c (maximum

grazing rate; control parameter: 1–3)
Grazing on a population (X) that

grows logistically; May 1977
pdX X

p a ! bX " c pdt X "1
a (nutrient load; control parameter: .1–.6); c (maxi-

mum recycling rate) p 1; p p 8; H p 1; decay
rate b p .8

Nondimensional version of a model
of nutrient (X) cycling in lakes;
Carpenter et al. 1999

dE E h "VVp r E 1 !( )Edt E h0 V

p pdV h "EEp r V 1 ! V( )pVdt hE

E0 (control parameter: 1–10 m!1); growth rates rE p
.1; rV p .05 day!1; critical macrophyte cover hV p
.2; critical light attenuation to get vegetation hE p 2
m!1; p p 4

Macrophyte cover (V) and vertical
light attenuation (E) in lakes;
Scheffer 1998; van Nes and Schef-
fer 2005

dN r N (K !N !a N )1 1 1 1 1 1,2 2pdt K1

dN r N (K !N !a N )2 1 2 2 2 2,1 1pdt K2

Growth rate r1 p r2 p 1 day!1; carrying capacity K1

(control parameter: 1–10); K2 p 1 g m!2; competi-
tion coefficients a1, 2p 1.4, a2, 1p 1.2

Two-species (N1, N2) Lotka-Volterra
competition model; Lotka (1925)
1956; Edelstein-Keshet 1988

∗r N (K !! a N )i i i i, j jjdNi p ∗dt K "ui

∗K p K (1 " Mh )i i i

i p 1, 2, …, n; ai, i p 1; ai, j p randomly drawn
competition coefficients; Ni p species i; M (control
parameter) p environmental factor that affects the
carrying capacities Ki; hi p sensitivity coefficient of
each species to M; u p small immigration factor to
prevent unrealistically low species biomasses; n p
20 species

Multispecies (Ni) Lotka-Volterra
competition model with external
forcing; van Nes and Scheffer
2004

Note: For the description and parameters of the individual-based model, see van Nes et al. 2002.

domly drawn competition coefficients that was used before
to show that such model can have alternative stable states.

The last model is a relatively realistic individual-based
model describing the dynamics of submerged macrophytes
in a lake (van Nes et al. 2003). We used the parameter
settings that van Nes et al. (2002) used to describe the
dynamics of Chara aspera in Lake Veluwemeer.

These models cover various degrees of complexity (the
last two are complex). They also represent mathematically
different kinds of catastrophic thresholds (see appendix in
the online edition of the American Naturalist).

Methods

Measuring Recovery Rate after Perturbation

Recovery rates are inferred from the amount of time that
the system needs to reach equilibrium after a small dis-
turbance. A commonly used approach to determine this
stability measure is to use an asymptotic approximation,
that is, the recovery rate to equilibrium after an infini-
tesimal disturbance (e.g., Beddington et al. 1976; De-
Angelis 1980; Neubert and Caswell 1997). In a model, this
recovery rate can be determined by linearizing in the stable
equilibrium and determining the eigenvalues. The domi-
nant (i.e., maximum) real eigenvalue is an approximation
of the recovery rate to equilibrium (Beddington et al. 1976;
DeAngelis 1980; Pimm 1984), even though for complex
systems it might neglect some transient behavior (Neubert
and Caswell 1997). We followed this approach to estimate

recovery rates by linearizing the models and determining
the maximal real part of the eigenvalues of the numerical-
ly approximated Jacobian matrix (using “Grind” for
MATLAB; see http://www.dow.wau.nl/aew/grind/).

For the individual-based model of aquatic macrophytes
(van Nes et al. 2002), the eigenvalues cannot be computed
in the same way as for the differential equation models.
The problem is that the initial state cannot be defined in
a simple way because individuals have different properties
simultaneously. Furthermore, the seasonal reproduction
cycle is a complicating factor. Therefore, in this case, we
estimated the recovery rates in the year-to-year biomass
by the following numerical procedure. The control param-
eter (vertical light attenuation without vegetation effect,
which can be interpreted as nutrients) was changed in 80
small steps. After each step, the model was stabilized for
50 years; thereafter, the vertical light attenuation was de-
creased during 1 year by 0.5 m!1. After this disturbance,
the model was run for 200 years to let it fully recover. The
average of the summer biomass of the last 50 years was
used as an estimation of the equilibrium biomass. The last
5 years in which the vegetation biomass differed from this
equilibrium by more than an arbitrary small fraction
(0.01%) were used to find the recovery rate, assuming
exponential decay for the biomass deviation from the equi-
librium by linear regression of log-transformed data.

Measuring Ecological Resilience

Ecological resilience, defined as the maximum disturbance
a system can take without shifting to an alternative state
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(Holling 1973), is not so easily quantified, even in models.
An ambiguity is that it is not obvious whether the dis-
turbance should be in the state space (e.g., an instant
mortality event) or one should also consider disturbances
in parameters (e.g., a temperature peak). Furthermore,
determining the maximum possible disturbance in the
state space is not easy in individual-based models and
complex models with many state variables because in such
models a disturbance can be defined in many different
ways. To avoid these problems, we simply take the distance
in a control parameter (e.g., nutrient loading) to the cat-
astrophic threshold value as a measure of ecological re-
silience for all models. This is a measure of how much
that parameter would need to be perturbed to reach the
threshold point, and it correlates to the size of the basin
of attraction.

Simulated Pulse Perturbation Experiment

One may think of a pulse perturbation experiment (Bender
et al. 1984) to measure recovery rate in practice. In contrast
with the proposed experiments of Petraitis and Dudgeon
(2004), the perturbation we have in mind here should be
rather small because it is not the intention to induce a
regime shift. The only requirement is that the perturbation
is large enough to be distinguished from the normal fluc-
tuations in the system. If, after the perturbation, the re-
covery is monitored, an exponential model can be fitted
to the time series:

dx
p !l(x ! m), (1)

dt

in which x is the state variable (e.g., biomass) and m is the
equilibrium biomass; l is the recovery rate. Both m and
l can be fitted using standard procedures. Alternatively,
the above model can be solved as

!ltx p m " de , (2)t

in which the model is initially disturbed by . Wem " d
tested this method with a computer experiment. We added
red noise to the May (1977) model. This was done by
replacing the parameter c (grazing rate) with a time series
generated by a simple recurrence equation for red noise
(Hasselmann 1976):

1
c p 1 ! (c ! c ) " c " b!, (3)t t!1 O O( )P

where P is a parameter that expresses the approximate
period of the noise in days (or other time units; P 1

noise), c0 is the approximate mean of the grazing1 p red
rate, b is parameter that expresses the daily deviation, and
! is drawn daily from a standard normal distribution. Our
perturbation was a reduction of the biomass X by 10%.
The generated time series was sampled every second day,
and m and l in equation (1) were fitted using a simplex
procedure (as implemented in MATLAB).

Results

In all the simple models we analyzed, the recovery rate
shows an almost linear relationship to ecological resilience
close to the threshold point, while in most cases farther
away from this point, the increase of recovery rate with
ecological resilience levels off (fig. 2; fig. A2 in the online
edition of the American Naturalist). This pattern implies
that close to a catastrophic shift (where the basin of at-
traction shrinks to nil), the recovery rate to equilibrium
after a disturbance slows to zero. Farther away from the
catastrophic shift, this relation is usually weaker (especially
in the Carpenter model; fig. 2b), though this is dependent
on the chosen parameters and control parameters (not
shown).

In the complex individual-based and multi-species com-
petition models, the estimated recovery rates also drop as
the threshold is approached (fig. 3). The irregularity in the
relation of the individual-based model (fig. 3d) is probably
due to stochasticity related to mortality and possibly
rounding-off errors in the model, as we are calculating
differences between years. Both cause small irregularities
between subsequent years. Although one could consider
this a model artifact, it also indicates that in practice it
may be difficult to detect differences in ecological resilience
in a very precise way.

Our results suggest that critical slowing down is not
something that arises only if the system is already very
close to a threshold point. In most of the models we tested,
the recovery rates change with ecological resilience, even
far from the critical point. For instance, figure 2 shows
monotonically increasing relationships between recovery
rates and ecological resilience over the entire parameter
ranges where the models have alternative stable states. Sim-
ilarly, for the two more complex models, the analysis (fig.
3) shows that the drop in recovery rates already starts far
away from the threshold when the ecological resilience is
still high. This is important, as it suggests that recovery
rates may often serve to signal changes in ecological re-
silience even if the system is still relatively far from a critical
threshold. Our simulated pulse perturbation experiment
(see “Methods”) exemplifies that a drop in return rates
may indeed be measured in noisy time series from a system
approaching a critical threshold (fig. 4).



Figure 2: Graphs showing how recovery rate (per day) from small perturbations changes as a catastrophic bifurcation is approached for four models:
a, grazing on a population that is logistically growing (May 1977); b, nutrient cycling in lakes (Carpenter et al. 1999); c, macrophytes (V ) and
vertical light attenuation (E) in lakes; and d, two species Lotka-Volterra. The upper graph of each pair shows the catastrophe fold in the equilibria
of the model in response to a control parameter (inflection points at the border of the shaded area are the bifurcation points). The lower graphs
show the recovery rates (determined from the eigenvalues; see text) from small perturbations from each of the two stable branches of the catastrophe
fold. For clarity, the upper branch of the catastrophe fold and the corresponding recovery rate curve are shown as long dashed lines (and labeled
1), whereas the lower equilibrium branch and its corresponding recovery rate curve are solid (labeled 2). The short dashed lines represent the
unstable saddle/node that separates the basins of attraction. In models with more state variables, results are shown for one of the variables only
(vegetation cover in c and biomass of species 1 in d). For parameters, see table 1.
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Figure 3: Relation between distance to threshold in control parameter and the recovery rate after a small disturbance for the two more complex
models (c, d). a and b indicate the biomasses of species as a function of a very slowly increasing control parameter. The left-hand graphs are from
the multispecies Lotka-Volterra model, and the right-hand graphs are from the individual-based model of lake vegetation (a grid with 1-10 # 10
m depth; parameters as in van Nes et al. 2002).

Discussion

It can be proved that for all continuous differential equa-
tions, recovery rates after small perturbations will de-
crease close to a catastrophic threshold (Wissel 1984).
This phenomenon is known in physics as “critical slowing
down.” In the appendix, we give an intuitive explanation
of the phenomenon. Interestingly, the two other known
generic indicators (increased variance and red shift in the
frequency spectrum) can be at least partly explained by
critical slowing down (Ives et al. 2003; Kleinen et al. 2003;
Brock and Carpenter 2006; Carpenter and Brock 2006).
Though the mathematical generality of critical slowing
down is promising, it does not guarantee that it is useful
as an indicator in practice. In the next section, we will
discuss various practical questions in relation to the po-
tential use of the indicator.

The Possibility of False Positives

It is important to note that critical slowing down can
theoretically lead to false positives because it does not

necessarily indicate a switch to an alternative state (see
appendix). It will, for instance, also occur if a predator-
prey system becomes cyclic. It can even happen if a thresh-
old is approached that merely implies an increased sen-
sitivity of the system (fig. 5c). With respect to the latter
point, it may seem disappointing that a drop in recovery
rates may indicate either an upcoming catastrophic shift
to an alternative basin of attraction or a “mere” high sen-
sitivity of the system around a critical condition. However,
those two situations are in fact closely related and may
often arise in the same kind of system. Depending on the
conditions, there may or may not be alternative stable
states when changing a control parameter. For example,
macrophyte abundance may respond catastrophically to
increasing nutrient loading if they are in shallow lakes and
smoothly if they are in deeper systems.

For a range of systems (e.g., shallow lakes or the ther-
mohaline circulation), we have a priori reasons to expect
that a catastrophic threshold must exist. The challenge then
is to know whether we are getting close to the threshold.
It is in those situations that indicators such as recovery
rates are perhaps most interesting to study.
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Figure 4: Simulated pulse perturbation experiments using the May (1977) model with red noise on parameter c (noise normally distributed with
P of 5 days and b of 0.1). Difference in recovery rates is obvious when comparing a situation far from a bifurcation (lower left; ) and ac p 1.7
situation close to a bifurcation (lower right; ). In both cases the perturbation consists of a 10% reduction in biomass (vertical arrows). Thec p 2.5
recovery time is determined by fitting an exponential decay ( and 0.6, respectively), using a simplex method (see “Methods”).l p 0.12

How Early May the Early Warning Signal Be Detected?

Our analysis suggests that critical slowing down usually oc-
curs far enough from the critical threshold to be usable as
early warning signal. In all the models we tested (except
perhaps Carpenter’s model), ecological resilience was pos-
itively, and often almost linearly, related to recovery rate
over a large domain of the control parameter. However, this
is not necessarily a generic feature. For instance, Nakajima
and DeAngelis (1989) showed that slowing down of recov-
ery rates can occur only very close to a threshold (here a
Hopf bifurcation, where the system becomes cyclic).

Interpreting Change in Recovery Rate Rather
than Absolute Values

Although the decrease of recovery rate close to a threshold
is generic, the slope of the relationship between recovery
rate and the width of the basin of attraction will be specific
to any particular system. It depends simply on the typical

timescales of change in the system (e.g., the slowest re-
production rate of key species). Thus, absolute values of
recovery rates are not very informative by themselves when
it comes to signaling the proximity of a catastrophic
threshold. Instead, we need to consider relative differences.
For instance, it makes little sense to try to interpret dif-
ferences in recovery rates between a forest and a plankton
system in terms of their vicinity to a threshold. Plankton
recovery rates will always be faster, even if the planktonic
system is close to a critical threshold. By contrast, if we
want to compare, for instance, the width of the basin of
attraction of two clear shallow lakes or to monitor eco-
logical resilience of a lake as nutrient loading increases,
differences in recovery rate after small perturbations are
likely to be meaningful.

Recovery from Small versus Large Perturbations

Our analysis relates to recovery rates from very small per-
turbations around the equilibrium. However, our simu-
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Figure 5: Rate of change as a function of abundance for a hypothetical
population with alternative equilibria (gray circles). The unstable equi-
librium (open circle) represents the border of the basins of attraction of
the two stable points (a). In the threshold point (b), the stable and
unstable equilibria merge, and the slope of the function that describes
the relationship between the rate of change and the population density
becomes zero. As one gets farther away from the bifurcation (a), this
slope (i.e., the eigenvalue) becomes larger. This implies that the rate of
recovery from a small perturbation decreases as the system approaches
the bifurcation. If the rate of change decreases with abundance over the
entire parameter range (c), the model cannot have alternative equilibria.
However, in the illustrated case, the state changes relatively steeply around
a threshold value, and here the rates of change are again small near the
equilibrium. This implies that critical slowing down will also mark such
noncatastrophic thresholds.

lated experiment indicates that slowing down is not re-
stricted to very small perturbations. Obviously, recovery
from larger perturbations may also be delayed if they bring
the system close to the unstable equilibrium that represents
the tipping point. However, this is a quite different phe-
nomenon. Clearly, it is less useful as a way to probe re-
silience, since such large perturbations would also imply
a large risk of inducing a large-scale catastrophic shift.
Therefore, it is interesting that, perhaps unexpectedly, even
the response to relatively small perturbations that do not
bring the system into the vicinity of a tipping point may
still reflect ecological resilience (figs. 2, 3).

Estimating Recovery Rates from Experimental Data

Measuring recovery rates in real ecosystems is not an easy
task in practice. Our simulated pulse experiment (fig. 4)
looks promising. However, the perturbation should be
larger than natural variation, implying that the method
may be difficult to apply in systems with a large natural
variation. Note that in spatially heterogeneous ecosystems,
one might experimentally perturb the system locally and
measure the rate at which the experimental patch returns
to equilibrium. For instance, we could clear out a small
patch of aquatic vegetation and measure the recovery rate.
This is attractive from a practical point of view. However,
one should keep in mind that spatial heterogeneity, irreg-
ular movement of key species (Nyström and Folke 2001),
and the spatial scale of the disturbance (Petraitis and La-
tham 1999) may affect the results.

Estimating Recovery Rates from Natural Time Series

Although experimental perturbation seems a promising
way to probe differences in ecological resilience, it does
not help to estimate resilience of natural systems in hind-
sight. However, there are ways to use natural time series
to infer ecological resilience too. For instance, we might
attempt to use, as a surrogate for experimental pertur-
bations, information about the response of a system to
stochastic natural disturbances. Held and Kleinen (2004)
propose a way of inferring recovery rates to equilibrium
from time series analysis. They suggest that if a time series
with a fixed small time step of sampling Dt is available, it
should be possible in principle to use these data to fit an
autoregressive model ( , wherey p exp [!lDt]y " j!n"1 n n

yn is the deviation of a measurement from the equilibrium
at time n, !n is Gaussian white noise, and the recovery
rate l and the intensity of the noise j are parameters to
be fitted). For more statistical and methodological details
about these techniques, we refer to Ives (1995) and Ives
et al. (2003). This so-called degenerate fingerprinting tech-
nique indeed seems an interesting possibility despite being
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data demanding and although frequently measured equi-
distant time series are rare in ecology.

In conclusion, although we are still at the first stages of
exploring the use of slowing down of recovery as a signal
of upcoming catastrophic shifts, our first results are prom-
ising. Many of the drawbacks of critical slowing down that
we discussed are shared with the other generic indicators
(Kleinen et al. 2003; Carpenter and Brock 2006). They are
all relative measures, data demanding, and unlikely to
work in systems with large variation. Nonetheless, since
prediction of regime shifts in other ways is notoriously
difficult, we have no other options. Therefore, it seems
worthwhile exploring the practical use of these and other
potential early warning signals further.
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